Rearrangement/Bromocyclization of O-Cyclohexenyl Carbamidates.

Model Studies for Aminocyclitol Synthesis

Spencer Knapp* and Dinesh V. Patel

Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903 USA

Summary: A three step method for conversion of 2-cyclohexen-1-ol (4) to the protected 1,2,3-methylamino-hydroxyl-bromocyclohexane 18 is described.

The cis-1,2-methylamino-hydroxyl functionality occurs frequently among aminocyclitol antibiotics. Representative structures include fortimicin A (1)², the diaminocctose portion of apramycin (2)³, and spectinomycin (3). Evidence has been presented in the case of 1 that the N-methyl group at C-4 is actually required for biological activity. In considering the total synthesis of aminocyclitol antibiotics from non-carbohydrate precursors, we initially focused on the problem of introducing the amino group onto a cyclohexyl ring. This had been achieved in a clever way by Overman, who described the [3,3] signatropic rearrangement of O-3-cyclohexenyl-trichloroacetamidate. We have modified the rearrangement to provide 1) an N-methyl substituent, 2) a resultant N-protecting group which allows further useful transformation, and 3) some flexibility for the preparation of secondary amines in general. We wish to report that the rearrangement of O-3-cyclohexenyl-carbamidates, followed by bromocyclization of the unsaturated carbamate, provides a direct route to the cis-1,2-methylamino-hydroxyl functionality in suitable form for aminocyclitol synthesis.

The requisite carbamidates were prepared by treatment of the potassium salt of the alcohol (KH, THF, 25°) with the appropriate imidoyl chloride (see below). In this way 2-cyclohexen-1-ol $(\underline{4})$ was converted to carbamidate $\underline{5}$. Rearrangement of $\underline{5}$ occurred at 110°, giving $\underline{6}$ in 88% overall yield from $\underline{4}$. The reaction was most conveniently performed in CCl4 solution in a sealed NMR tube so that progress of the reaction could be monitored.

Four different imidoyl chlorides $\frac{9}{a-d}$ were obtained by chlorination? of the isothiocyanate $\frac{7}{3}$, then displacement of one chloride of $\frac{8}{3}$ by sodium methoxide or potassium benzyloxide in ether at 25°. The use of $\frac{9}{3}$ b-d with several cyclic allylic alcohols to prepare N-allyl carbamates $\frac{10}{3}$ is shown in the Table. Since different R groups tolerate the rearrangement, and a number of isothiocyanates $\frac{7}{3}$ are available, this method should serve for the preparation of a variety of protected secondary amines. The nature of the carbamate protecting group may also be adjusted by changes in R' as illustrated by the synthesis of benzyloxycarbonyl-protected amine $\frac{12}{3}$ (entry 3). Entries 4,5, and 6 establish that the rearrangement is probably of the [3,3] signatropic variety since $\frac{1}{3}$ H NMR spectra of the products $\frac{13}{3}$ show that complete migration of the carbon-carbon double bond has occurred. Introduction of the substituted nitrogen at a hindered position (entry 4) is feasible, but a competing thermal elimination reaction (leading to PhCH₂NHCO₂CH₃) reduces the yield. A thiocarbamidate was also prepared and rearranged for comparison (entry 7).

$$R-N=C=S \xrightarrow{C1_2} R-N=CC1_2 \xrightarrow{R'O^-} R-N=C(OR')C1$$

$$\frac{7}{2} \qquad \qquad \underbrace{8}{2} \qquad \qquad \underbrace{9}{2}$$

$$a. R = CH_3, R' = CH_3 \qquad c. R = Ph, R' = CH_3$$

$$b. R = CH_2Ph, R' = CH_3 \qquad d. R = Ph, R' = CH_2Ph$$

Treatment of $\underline{6}$ with Br₂ and AgBF₄ in CH₂Cl₂ solution at -78° caused disappearance of the starting material within 10 min (tlc analysis). We assume the formation of iminium salt $\underline{17}$ by analogy to other halocyclizations^{8,9}, although no characterization was attempted. Quenching the reaction at 25° with aqueous NaHCO₃ gave the crystalline bromocarbamate with structure $\underline{18}$, according to its IR and 1 H NMR spectra. 10 In the same way $\underline{10}$ and $\underline{13}$ gave $\underline{19}$ and $\underline{20}$, respectively. This bromocyclization reaction secures the cis-1,2-methylamino-hydroxyl functionality in protected form and provides a bromo substituent which is available for nucleophilic displacement, reductive removal, or dehydrobromination. The sequence allylic alcohol \rightarrow bromocarbamate also provides potential access to N-substituted (as from $\underline{19}$) or ring-substituted (as from $\underline{20}$) aminocyclitol analogues.

Table. Synthesis of N-allyl carbamates

entry	allylic alchol	imidoyl chloride	conditions	product (% yield) ^d
1	<u>4</u>	<u>9 b</u>	110° 24 h	CO ₂ CH ₃ 10 (76)
2	<u>4</u>	<u>9c</u>	98° 48 h	CO ₂ CH ₃ 11 (70) Ph mp 92.5-93.5°
3	<u>4</u>	<u>9a</u>	90° 24 h	CO ₂ CH ₂ Ph Ph 12 (70)
4	CH 3	<u>9</u> b	80° 43 h	CH ₃ CH ₂ Ph (45)
5	OH CH ₂	9Ъ	100° 30 h	CH ₂ Ph 14 (73)
6	сн 3 он р	<u>9</u> b	90° 72 h	CH ₃ CH ₂ Ph CO ₂ CH ₃ 15 (63) f
7	<u>4</u>	g	110° 24 h	SCH ₃ 16 (50)

a.

Only one rearranged carbamate was isolated, presumably the E isomer.6 f.

Dreiding, A.A.; Hartman, J.A. J. Amer. Chem. Soc. 1953, 75, 3723.

This alcohol was prepared by NaBH₃/CeCl reduction of 1-acetylcyclohexene. Gemal, A.L.; ъ. Luche, J.-L. J. Amer. Chem. Soc. 1981, 103, 5454.

The reactions were carried out on a 1-2 mmol scale in CCl4 solution in a sealed NMR tube. c.

Yields (overall for two steps) refer to product isolated by chromatography on silica gel. The assigned structures are supported by IR and $^{\rm l}{\rm H}$ NMR spectra. d.

PhCH2NHCO2CH3 was also isolated (50% yield). Compound 13 was shown to be stable to the reaction conditions.

The thio analogue of $\frac{5}{2}$ was prepared by treating the sodium salt of $\frac{4}{2}$ with CH₃NCS, then CH₃I g. in THF at 25°.

We are currently exploring the application of these reactions to aminocyclitol total synthesis.

<u>Acknowledgments</u>. This work was supported by a Biomedical Research Support Grant, administered by Rutgers University, and by the Merck Foundation. We are grateful to Mark J. Sebastian for preliminary bromocylization experiments.

References and Notes

- Rinehart, K.L.; Suami, T. "Aminocyclitol Antibiotics", American Chemical Society: Washington, DC 1980.
- 2. Mitscher, L.A. et al. J. Antibiot. 1977, 30, 552.
- 3. O'Connor, S. et al. J. Org. Chem. 1976, 41, 2087.
- 4. Wiley, P.F.; Argoudelis, A.D.; Haeksema, H. J. Amer. Chem. Soc. 1963, 85, 2652.
- 5. Kurath, P. et al. J. Antibiot. 1981, 34, 691.
- 6. Overman, L.E. Acc. Chem. Res. 1980, 13, 218.
- 7. Ulrich, H. "The Chemistry of the Imidoyl Halides", Plenum Press: New York, 1968, p. 40.
- 8. Winstein, S.; Goodman, L.; Boschan, R. J. Amer. Chem. Soc. 1950, 72, 2311.
- Iodocyclization of an unsaturated carbamate was used to great advantage in the synthesis of methyl α,L-garosaminide. Pauls, H.W.; Fraser-Reid, B. J. Amer. Chem. Soc. 1980, 102, 3956.
- 10. Compound 18 IR (KBr): 1760 cm 1 ; 1 H NMR (CDCl $_{3}$, 60 MHz): δ 4.55 (app t, J 6.5 Hz, 1H), 4.0-4.4 (m, 1H), 3.6-4.0 (m, 1H), 2.74 (s, 3H), 1.4-2.4 (m, 6H).

(Received in USA 15 June 1982)